Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Int J Mol Sci ; 24(10)2023 May 22.
Article in English | MEDLINE | ID: covidwho-20243162

ABSTRACT

Current worldwide mRNA vaccination against SARS-CoV-2 by intramuscular injection using a needled syringe has greatly protected numerous people from COVID-19. An intramuscular injection is generally well tolerated, safer and easier to perform on a large scale, whereas the skin has the benefit of the presence of numerous immune cells, such as professional antigen-presenting dendritic cells. Therefore, intradermal injection is considered superior to intramuscular injection for the induction of protective immunity, but more proficiency is required for the injection. To improve these issues, several different types of more versatile jet injectors have been developed to deliver DNAs, proteins or drugs by high jet velocity through the skin without a needle. Among them, a new needle-free pyro-drive jet injector has a unique characteristic that utilizes gunpower as a mechanical driving force, in particular, bi-phasic pyrotechnics to provoke high jet velocity and consequently the wide dispersion of the injected DNA solution in the skin. A significant amount of evidence has revealed that it is highly effective as a vaccinating tool to induce potent protective cellular and humoral immunity against cancers and infectious diseases. This is presumably explained by the fact that shear stress generated by the high jet velocity facilitates the uptake of DNA in the cells and, consequently, its protein expression. The shear stress also possibly elicits danger signals which, together with the plasmid DNA, subsequently induces the activation of innate immunity including dendritic cell maturation, leading to the establishment of adaptive immunity. This review summarizes the recent advances in needle-free jet injectors to augment the cellular and humoral immunity by intradermal injection and the possible mechanism of action.


Subject(s)
COVID-19 , Humans , Injections, Intradermal , Injections, Jet , COVID-19/prevention & control , SARS-CoV-2 , Injections, Intramuscular
2.
Arch Toxicol ; 97(4): 1177-1189, 2023 04.
Article in English | MEDLINE | ID: covidwho-2209309

ABSTRACT

pGO-1002, a non-viral DNA vaccine that expresses both spike and ORF3a antigens of SARS-CoV-2, is undergoing phase 1 and phase 2a clinical trials in Korea and the US. A preclinical repeated-dose toxicity study in New Zealand white rabbits in compliance with Good Laboratory Practice (GLP) was conducted to assess the potential toxicity, local tolerance, and immunogenicity of the vaccine and GeneDerm suction device. The dose rate was 1.2 mg/head pGO-1002, and this was administered intradermally to a group of animals (eight animals/sex/group) three times at 2-week intervals, followed by a 4-week recovery period. After each administration, suction was applied to the injection site using the GeneDerm device. Mortality, clinical signs, body weight, food consumption, skin irritation, ophthalmology, body temperature, urinalysis, and clinical pathology were also monitored. Gross observations and histopathological evaluation were performed. Overall, pGO-1002 administration-related changes were confined to minor damage or changes at the injection site, increased spleen weight and minimal increased cellularity in white pulp. All changes of injection site were considered local inflammatory changes or pharmacological actions due to the vaccine with the changes in spleen considered consistent with vaccine-induced immune activation. All findings showed reversibility during the 4-week recovery period. Animals vaccinated with pGO-1002, administered by intradermal injection and followed by application of suction with GeneDerm, developed humoral and cellular responses against the SARS-CoV-2 antigens consistent with prior studies in rats. Collectively, it was concluded that the pGO-1002 vaccine was safe and effective under these experimental conditions and these data supported future human study of the vaccine, now known as GLS-5310, for clinical trial use.


Subject(s)
COVID-19 , Vaccines, DNA , Humans , Rabbits , Animals , Rats , SARS-CoV-2 , Injections, Intradermal , COVID-19/prevention & control , Suction
3.
Vaccine ; 41(2): 304-314, 2023 01 09.
Article in English | MEDLINE | ID: covidwho-2184257

ABSTRACT

All seasonal influenza vaccines for 2021-2022 in the US were quadrivalent and the market continues to be dominated by intramuscular delivery of non-adjuvanted, virion-derived antigens grown in chicken eggs. Up to four new egg-adapted production influenza vaccine strains must be generated each year. The introduction in 2012 of Flucelvax®, which is grown in mammalian suspension cell culture and uses vaccine production strains without adaptive mutations for efficient growth in eggs, represented a major advance in vaccine production technology. Here we demonstrate that Flucelvax can be reformulated and combined with a liposomal adjuvant containing QS-21 (Verndari Adjuvant System 1.1, VAS1.1) or QS-21 and 3D-PHAD (VAS1.2) for intradermal administration using a painless skin patch, VaxiPatch™. VAS1.2 is similar to AS01B, the adjuvant system used in Shingrix® and Mosquirix™. We show that Flucelvax, when reformulated and concentrated using tangential flow filtration (TFF), maintains hemagglutination and single radial immunodiffusion (SRID) potency. Loading the reformulated Flucelvax material onto VaxiPatch arrays conferred high levels of resistance to heat stress and room temperature stability. TFF enriched vaccine antigens were combined with VAS1.1 or VAS1.2 and dispensed in 10nL drops into the pockets of 36 (total 360 nL) stainless steel microneedles arranged in a microarray 1.2 cm in diameter. Using VaxiPatch delivery of 2 µg of antigen, we demonstrated intramusuclar-comparable IgG and hemagglutination inhibition (HAI) immune responses in Sprague Dawley® rats. With addition of VAS1.2, antigen-specific IgG titers were increased as much as 68-fold (47-fold for VAS1.1) with improvements in seroconversion for three of four strains (all four were improved by VAS1.1). TFF-reformulated antigens combined with VAS1.1 or VAS1.2 and delivered by VaxiPatch showed only minor skin reactogenicity after 1 h and no skin reactogenicity after 24 h. These data indicate that VaxiPatch and the VAS system have the potential to be transformative for vaccine delivery.


Subject(s)
Influenza Vaccines , Influenza, Human , Rats , Animals , Humans , Seasons , Rats, Sprague-Dawley , Influenza, Human/prevention & control , Adjuvants, Immunologic , Vaccination , Hemagglutination Inhibition Tests , Vaccines, Combined , Antibodies, Viral , Immunoglobulin G , Injections, Intradermal , Mammals
4.
Acta Biomater ; 148: 133-141, 2022 08.
Article in English | MEDLINE | ID: covidwho-1885570

ABSTRACT

Microneedles can realize the intradermal and transdermal delivery of drugs. However, most conventional microneedles made of metal, polymer and ceramics are unsuitable for the delivery of mRNA drugs that are fragile and temperature-sensitive. This study explores the usage of cryomicroneedles (CryoMNs) for the intradermal delivery of mRNA molecules. Taking luciferase mRNA as an example, we first optimize the formulation of CryoMNs to maximize mRNA stability. Later, in the mouse model, we compare the delivery efficiency with the conventional subcutaneous injection for both the luciferase mRNA and COVID-19 Comirnaty mRNA vaccines, where CryoMNs delivered mRNA vaccines successfully induce specific B-cell antibody, neutralizing activity and T-cell responses. STATEMENT OF SIGNIFICANCE: mRNA vaccines are fragile and temperature-sensitive, so they are mainly delivered by intramuscular injection that often causes pain and requires clinical expertise to immunize patients. Microneedles permit convenient, fast and safe vaccination. However, existing microneedle platforms are ineffective to protect the integrity of mRNA vaccines in fabrication, storage, and administration. This work utilizes cryomicroneedles (CryoMNs) technology to intradermally deliver mRNA. In the mouse model, CryoMNs are compared with the subcutaneous injection for the delivery efficiency of both the luciferase mRNA and COVID-19 Comirnaty mRNA vaccines, where CryoMNs delivered mRNA vaccines successfully produce specific B-cell antibodies, T-cell responses, and neutralizing activity. This work is expected to provide a new delivery strategy for the emerging mRNA therapeutics.


Subject(s)
COVID-19 , Animals , COVID-19/prevention & control , Drug Delivery Systems , Injections, Intradermal , Mice , Needles , RNA, Messenger/genetics , Vaccination
5.
Vaccine ; 40(6): 873-879, 2022 02 07.
Article in English | MEDLINE | ID: covidwho-1615721

ABSTRACT

Under the pandemic situation, there is an urgent need to produce and acquire sufficient quantities of prophylactic vaccines. It becomes important to devise a way to achieve reliable immunity with lower doses to distribute limited supplies of vaccines to maximum number of people very quickly. Intradermal (ID) vaccination is one such method to increase the effectiveness of vaccines. However, this method has not been widely used in general clinical practice because it is technically difficult to inject vaccines precisely into the ID tissue. Therefore, new ID delivery systems that allow reliable ID administration are under development. In this paper, we summarize its design and present the results of performance and usability testing for the Immucise™ Intradermal Injection System (Immucise™). This study showed that Immucise™ can reduce dead volume and inject drugs precisely into the ID tissues of subjects from infants to the elderly and can be used correctly and safely by healthcare professionals. This randomized controlled trial compared ID administration with Immucise™ and standard subcutaneous (SC) administration of seasonal influenza vaccine by analyzing the efficacy of the vaccine in the elderly group at 90 days and 180 days after administration. It was found that the vaccine for the ID group was as effective or more effective than that for the SC group up to 180 days later. It was also found that the geometric mean titer values, especially for B strains, were higher in the two-dose ID group than in the two-dose SC group. These findings suggest that Immucise™ is one of the best devices to distribute a small amount of vaccine quickly and widely to a larger number of people with little loss of vaccine during a pandemic.


Subject(s)
Influenza Vaccines , Influenza, Human , Aged , Antibodies, Viral , Humans , Influenza, Human/prevention & control , Injections, Intradermal/methods , Injections, Intramuscular , Vaccination/methods
6.
Front Immunol ; 12: 732298, 2021.
Article in English | MEDLINE | ID: covidwho-1506693

ABSTRACT

Immune modulating therapies and vaccines are in high demand, not least to the recent global spread of SARS-CoV2. To achieve efficient activation of the immune system, professional antigen presenting cells have proven to be key coordinators of such responses. Especially targeted approaches, actively directing antigens to specialized dendritic cells, promise to be more effective and accompanied by reduced payload due to less off-target effects. Although antibody and glycan-based targeting of receptors on dendritic cells have been employed, these are often expensive and time-consuming to manufacture or lack sufficient specificity. Thus, we applied a small-molecule ligand that specifically binds Langerin, a hallmark receptor on Langerhans cells, conjugated to a model protein antigen. Via microneedle injection, this construct was intradermally administered into intact human skin explants, selectively loading Langerhans cells in the epidermis. The ligand-mediated cellular uptake outpaces protein degradation resulting in intact antigen delivery. Due to the pivotal role of Langerhans cells in induction of immune responses, this approach of antigen-targeting of tissue-resident immune cells offers a novel way to deliver highly effective vaccines with minimally invasive administration.


Subject(s)
Antigens, CD/metabolism , Antigens/administration & dosage , Green Fluorescent Proteins/administration & dosage , Langerhans Cells/metabolism , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Animals , Antigens/immunology , Antigens/metabolism , COS Cells , Chlorocebus aethiops , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Injections, Intradermal , Langerhans Cells/immunology , Ligands , Miniaturization , Nanomedicine , Needles , Protein Binding , Protein Transport , Proteolysis , THP-1 Cells , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Vaccines, Subunit/metabolism
7.
Cell Rep Med ; 2(10): 100420, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1450242

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health and social and economic infrastructures. Here, we assess the immunogenicity and anamnestic protective efficacy in rhesus macaques of an intradermal (i.d.)-delivered SARS-CoV-2 spike DNA vaccine, INO-4800, currently being evaluated in clinical trials. Vaccination with INO-4800 induced T cell responses and induced spike antigen and RBD binding antibodies with ADCP and ADCD activity. Sera from the animals neutralized both the D614 and G614 SARS-CoV-2 pseudotype viruses. Several months after vaccination, animals were challenged with SARS-CoV-2 resulting in rapid recall of anti-SARS-CoV-2 spike protein T cell and neutralizing antibody responses. These responses were associated with lower viral loads in the lung. These studies support the immune impact of INO-4800 for inducing both humoral and cellular arms of the adaptive immune system, which are likely important for providing durable protection against COVID-19 disease.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Lung/virology , T-Lymphocytes/immunology , Animals , Antibodies, Neutralizing/blood , COVID-19 Vaccines/therapeutic use , Female , Injections, Intradermal , Macaca mulatta , Male , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/therapeutic use , Viral Load
9.
Front Immunol ; 12: 645210, 2021.
Article in English | MEDLINE | ID: covidwho-1383856

ABSTRACT

Vaccination is one of the most efficient public healthcare measures to fight infectious diseases. Nevertheless, the immune mechanisms induced in vivo by vaccination are still unclear. The route of administration, an important vaccination parameter, can substantially modify the quality of the response. How the route of administration affects the generation and profile of immune responses is of major interest. Here, we aimed to extensively characterize the profiles of the innate and adaptive response to vaccination induced after intradermal, subcutaneous, or intramuscular administration with a modified vaccinia virus Ankara model vaccine in non-human primates. The adaptive response following subcutaneous immunization was clearly different from that following intradermal or intramuscular immunization. The subcutaneous route induced a higher level of neutralizing antibodies than the intradermal and intramuscular vaccination routes. In contrast, polyfunctional CD8+ T-cell responses were preferentially induced after intradermal or intramuscular injection. We observed the same dichotomy when analyzing the early molecular and cellular immune events, highlighting the recruitment of cell populations, such as CD8+ T lymphocytes and myeloid-derived suppressive cells, and the activation of key immunomodulatory gene pathways. These results demonstrate that the quality of the vaccine response induced by an attenuated vaccine is shaped by early and subtle modifications of the innate immune response. In this immunization context, the route of administration must be tailored to the desired type of protective immune response. This will be achieved through systems vaccinology and mathematical modeling, which will be critical for predicting the efficacy of the vaccination route for personalized medicine.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , Myeloid-Derived Suppressor Cells/immunology , Vaccination , Vaccinia virus/immunology , Vaccinia/immunology , Viral Vaccines/pharmacology , Animals , Injections, Intradermal , Injections, Intramuscular , Macaca fascicularis , Male , Vaccines, Attenuated/pharmacology
11.
Microbes Infect ; 23(4-5): 104843, 2021.
Article in English | MEDLINE | ID: covidwho-1258465

ABSTRACT

COVID-19 pandemic has caused severe disruption of global health and devastated the socio-economic conditions all over the world. The disease is caused by SARS-CoV-2 virus that belongs to the family of Coronaviruses which are known to cause a wide spectrum of diseases both in humans and animals. One of the characteristic features of the SARS-CoV-2 virus is the high reproductive rate (R0) that results in high transmissibility of the virus among humans. Vaccines are the best option to prevent and control this disease. Though, the traditional intramuscular (IM) route of vaccine administration is one of the effective methods for induction of antibody response, a needle-free self-administrative intradermal (ID) immunization will be easier for SARS-CoV-2 infection containment, as vaccine administration method will limit human contacts. Here, we have assessed the humoral and cellular responses of a RBD-based peptide immunogen when administered intradermally in BALB/c mice and side-by-side compared with the intramuscular immunization route. The results demonstrate that ID vaccination is well tolerated and triggered a significant magnitude of humoral antibody responses as similar to IM vaccination. Additionally, the ID immunization resulted in higher production of IFN-γ and IL-2 suggesting superior cellular response as compared to IM route. Overall, our data indicates immunization through ID route provides a promising alternative approach for the development of self-administrative SARS-CoV-2 vaccine candidates.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Vaccination/methods , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Formation , Female , Immunity, Cellular , Immunity, Humoral , Injections, Intradermal , Injections, Intramuscular , Male , Mice, Inbred BALB C , Spike Glycoprotein, Coronavirus/immunology
12.
J Immunol Res ; 2021: 5531220, 2021.
Article in English | MEDLINE | ID: covidwho-1232374

ABSTRACT

The nucleocapsid protein (NP) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains immunogenic epitopes that can induce cytotoxic T lymphocyte (CTL) against viral infection. This makes the nucleocapsid protein a suitable candidate for developing a vaccine against SARS-CoV-2 infection. This article reports the intradermal delivery of NP antigen using dissolvable microneedle skin patches that could induce both significant B cell and T cell responses.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , B-Lymphocytes/immunology , COVID-19 Vaccines/administration & dosage , Coronavirus Nucleocapsid Proteins/administration & dosage , Enzyme-Linked Immunosorbent Assay , Injections, Intradermal/methods , Mice , Mice, Inbred BALB C , Phosphoproteins/administration & dosage , Phosphoproteins/immunology
13.
JCI Insight ; 6(10)2021 05 24.
Article in English | MEDLINE | ID: covidwho-1197299

ABSTRACT

Emerging coronaviruses from zoonotic reservoirs, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been associated with human-to-human transmission and significant morbidity and mortality. Here, we study both intradermal and intramuscular 2-dose delivery regimens of an advanced synthetic DNA vaccine candidate encoding a full-length MERS-CoV spike (S) protein, which induced potent binding and neutralizing antibodies as well as cellular immune responses in rhesus macaques. In a MERS-CoV challenge, all immunized rhesus macaques exhibited reduced clinical symptoms, lowered viral lung load, and decreased severity of pathological signs of disease compared with controls. Intradermal vaccination was dose sparing and more effective in this model at protecting animals from disease. The data support the further study of this vaccine for preventing MERS-CoV infection and transmission, including investigation of such vaccines and simplified delivery routes against emerging coronaviruses.


Subject(s)
Coronavirus Infections/veterinary , Macaca mulatta/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Vaccines, DNA/therapeutic use , Viral Vaccines/therapeutic use , Animals , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Immunogenicity, Vaccine , Injections, Intradermal , Middle East Respiratory Syndrome Coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
14.
Clin Immunol ; 226: 108730, 2021 05.
Article in English | MEDLINE | ID: covidwho-1188419

ABSTRACT

OBJECTIVE: To understand the anti-virus adaptive immune response occurring during SARS-Cov-2 infection is necessary to have methods to investigate cellular and humoral components. The goal of this study has been to investigate the utility of a specific spike-DTH test using a coronavirus recombinant protein in COVID-19 patients. METHODS: DTH studies were performed by intradermal injection of a commercial recombinant spike protein from SARS-CoV-2 along with conventional serology studies. RESULTS: Fifty-one COVID-19 patients were studied showing 84,3% of concordance with spike-DTH and anti-RBD-IgG. Spike-DTH was superior to identify seven more COVID-19 individuals. A high specificity was found with no positive spike DTH reactions in the non-sick individuals. The skin test also showed more stable results over time while specific anti-RBD-IgG decreased gradually. Clinical severity groups also showed a progressive gradient of larger positive spike-DTH. CONCLUSION: Specific spike DTH test seems to be an easy method to study cell immune response.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/immunology , Hypersensitivity, Delayed/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , Female , Humans , Immunity, Cellular , Immunoglobulin G/blood , Injections, Intradermal , Male , Middle Aged , Protein Domains , Recombinant Proteins , SARS-CoV-2/genetics
15.
Trials ; 21(1): 881, 2020 Oct 26.
Article in English | MEDLINE | ID: covidwho-892371

ABSTRACT

OBJECTIVES: The BCG vaccine, widely used in Brazil in new-borns, induces adjuvant protection for several diseases, including childhood virus infections. BCG activates monocytes and innate memory NK cells which are crucial for the antiviral immune response. Therefore, strategies to prevent COVID-19 in health workers (HW) should be carried out to prevent them becoming unwell so that they can continue to work during the pandemic. The hypothesis is that BCG will improve the innate immune response and prevent symptomatic infection or COVID-19 severity. The primary objective is to verify the effectiveness and safety of the BCG vaccine to prevent or reduce incidence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in the city of Goiânia (Brazil) among HW previously vaccinated with BCG and also its severity and mortality during the pandemic of the disease. Secondary objectives are to estimate the incidence of COVID-19 among these professionals and the innate immune response elicited to BCG. TRIAL DESIGN: This a phase II trial for repositioning BCG as a preventive strategy against COVID-19. The trial is an open-label, parallel-group randomised clinical trial, comparing HW vaccinated with BCG and HW not vaccinated. PARTICIPANTS: The trial will recruit 800 HW of Goiânia - Goiás, Brazil to reach a total of 400 HW included after comorbidities questioning and laboratorial evaluation. Eligibility criteria: Any HW presenting BCG vaccination scar with direct contact with suspected COVID-19 patients for at least 8 hours per week, whether in hospital beds, ICU, or in transportation or admission (nurses, doctors, physiotherapists, nutritionists, receptionists, etc.) who have negative IgM and IgG COVID-19 test. Participants with any of the following characteristics will be excluded: - Have had in the last fifteen days any signs or symptoms of virus infection, including COVID-19; - Have had fever in the last fifteen days; - Have been vaccinated fifteen days before the inclusion; - Have a history or confirmation of any immunosuppressive disease such as HIV, presented solid tumour in the last two years or autoimmune diseases; - Are under preventive medication with antibiotics, steroid anti-inflammatories, or chemotherapy; - Have less than 500 neutrophils per mL of blood; - Have previously been diagnosed with tuberculosis; - Are breastfeeding or pregnant; - Are younger than 18 years old; - Are participating as an investigator in this clinical trial. INTERVENTION AND COMPARATOR: HW will be randomized into the BCG vaccinated group or the BCG unvaccinated control group. The BCG vaccinated group will receive in the right arm, intradermally, a one off dose of 0.1 mL corresponding to approximately 2 x105 to 8 x105 CFU of live, freeze-dried, attenuated BCG Moscow 361-I, Bacillus Calmette Guerin vaccine (Serum Institute of India PVT. LTD.). The unvaccinated control group will not be vaccinated. The HW allocated in both groups will be followed up at specific times points until 180 days post inclusion. The vaccinated and control groups will be compared according to COVID-19 related outcomes. MAIN OUTCOMES: The primary outcomes are the incidence coefficient of infection by SARS-CoV-2 determined by RT-PCR of naso-oropharyngeal swab specimen or rapid lateral flow IgG and IgM test, and presence of general COVID-19 symptoms, disease severity and admission to hospital during the 180 days of follow up. The secondary outcome is the innate immune response elicited 15-20 days after vaccination. RANDOMISATION: The vaccine vial contains approximately 10 doses. In order to optimize the vaccine use, the randomisation was performed in blocks of 20 participants using the platform randomization.com [ http://www.jerrydallal.com/random/permute.htm ]. The randomization was prepared before any HW inclusion. The results were printed and inserted in sealed envelopes that were numbered with BCG-001 to BCG-400. The printed results as well the envelopes had the same numbers. At the time of the randomisation, each participant that meets the inclusion criteria will receive a consecutive participant number [BCG-001-BCG-400]. The sealed envelope with the assigned number, blinded to the researchers, will be opened in front of the participant and the arm allocation will be known. BLINDING (MASKING): There is no masking for the participants or for the healthcare providers. The study will be blinded to the laboratory researchers and to those who will be evaluating the outcomes and performing the statistical analyses. In this case, only the participant identification number will be available. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): Four hundred heath workers will be randomised in two groups. Two hundred participants will be vaccinated, and 200 participants will not be vaccinated. TRIAL STATUS: The protocol approved by the Brazilian Ethical Committee is the seventh version, number CAAE: 31783720.0.0000.5078. The trial has been recruiting since September 20th, 2020. The clinical trial protocol was registered on August 5th, 2020. It is estimated that recruitment will finish by March 2021. TRIAL REGISTRATION: The protocol number was registered on August 5th, 2020 at REBEC (Registro Brasileiro de Ensaios Clínicos). Register number: RBR-4kjqtg and WHO trial registration number UTN: U1111-1256-3892. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
BCG Vaccine/administration & dosage , Coronavirus Infections/prevention & control , Immunity, Innate/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus/immunology , Brazil/epidemiology , COVID-19 , Case-Control Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cross Protection/immunology , Follow-Up Studies , Health Personnel/statistics & numerical data , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Incidence , Injections, Intradermal , Killer Cells, Natural/immunology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Safety , Treatment Outcome
16.
Vaccine ; 38(48): 7629-7637, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-879777

ABSTRACT

This work demonstrates the presence of immune regulatory cells in the cervical lymph nodes draining Bacillus Calmette-Guérin (BCG) vaccinated site on the dorsum of the ear in guinea pigs. It is shown that whole cervical lymph node cells did not proliferate in vitro in the presence of soluble mycobacterial antigens (PPD or leprosin) despite being responsive to whole mycobacteria. Besides, T cells from these lymph nodes separated as a non-adherent fraction on a nylon wool column, proliferated to PPD in the presence of autologous antigen presenting cells. Interestingly, addition of as low as 20% nylon wool adherent cells to these, sharply decreased the proliferation by 83%. Looking into what cells in the adherent fraction suppressed the proliferation, it was found that neither the T cell nor the macrophage enriched cell fractions of this population individually showed suppressive effect, indicating that their co-presence was necessary for the suppression. Since BCG induced granulomas resolve much faster than granulomas induced by other mycobacteria such as Mycobacterium leprae the present experimental findings add to the existing evidence that intradermal BCG vaccination influences subsequent immune responses in the host and may further stress upon its beneficial role seen in Covid-19 patients.


Subject(s)
Antigens, Bacterial/pharmacology , BCG Vaccine/pharmacology , Granuloma/immunology , Lymph Nodes/immunology , T-Lymphocytes/immunology , Animals , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/microbiology , COVID-19 , Cell Adhesion , Cell Proliferation , Coronavirus Infections/prevention & control , Ear , Female , Granuloma/microbiology , Guinea Pigs , Humans , Injections, Intradermal , Lymph Nodes/microbiology , Macrophages/drug effects , Macrophages/immunology , Macrophages/microbiology , Male , Mycobacterium bovis/immunology , Mycobacterium leprae/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Remission, Spontaneous , T-Lymphocytes/classification , T-Lymphocytes/drug effects , T-Lymphocytes/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL